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Summary

Tree cover in savanna ecosystems is usually regarded as

unstable, varying with rainfall, fire, and herbivory [1–4].
In sub-Saharan Africa, elephants (Loxodonta africana)

suppress tree cover, thereby maintaining landscape hetero-
geneity by promoting tree-grass coexistence. In the absence

of elephants, tree encroachment may convert savannas into
closed-canopy woodlands [5, 6]; when elephants increase in

abundance, intensified browsing pressure can transform
savannas into open grasslands [5–8]. We show that symbi-

otic ants stabilize tree cover across landscapes in Kenya
by protecting a dominant tree from elephants. In feeding

trials, elephants avoided plants with ants and did not distin-
guish between a myrmecophyte (the whistling-thorn tree

[Acacia drepanolobium]) fromwhich ants had been removed
and a highly palatable, nonmyrmecophytic congener. In field

experiments, elephants inflicted severe damage on whis-

tling-thorn trees from which ants had been removed. Across
two properties on which elephants increased between 2003

and 2008, cover of whistling-thorn did not change signifi-
cantly inside versus outside large-scale elephant exclusion

fences; over the same period of time, cover of nonmyrmeco-
phytes differed profoundly inside versus outside exclusion

fences. These results highlight the powerful role that symbi-
oses and plant defense play in driving tree growth and

survival in savannas, ecosystems of global economic and
ecological importance.

Results and Discussion

Within African savannas, elephants are powerful drivers of
landscape-level habitat heterogeneity, capable of inflicting
intensive and extensive damage to woody plants [4–8]. Trees
and shrubs employ various mechanisms to reduce such cata-
strophic herbivory, including vigorous resprouting of broken
stems, the development of heavy buttresses, growth to
large sizes, and the production of a variety of chemical and
spinescent defenses thatmay reduce palatability [9]. In African
savanna ecosystems, including the Laikipia plateau in central
Kenya, many trees in the widespread genus Acacia are
defended with spines and digestibility-reducing secondary
compounds (tannins). Despite such defenses, these plants
often suffer intense bouts of elephant herbivory that may
*Correspondence: jgoheen@uwyo.edu
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severely damage or kill mature trees (Figure 1). In striking
contrast, a co-occurring congener defended by ant body-
guards (Acacia drepanolobium) is seldom browsed by
elephants and occurs in dense near-monocultures (800–1100
individuals/hectare) throughout many portions of its range
[10–13]. We hypothesized that the protective ant symbionts
of A. drepanolobium serve as an effective defense against
elephant herbivory and thus play a strong role in buffering
this species from fluctuations in abundance in the face of vari-
ation in elephant numbers.
We investigated the role of symbiotic ants in determining

levels of tree cover followingmanipulated and natural changes
in numbers of large mammalian herbivores in central Kenya.
Our study sites in Laikipia, Kenya (see Figure S1 available
online) are underlain by one of two well-defined soil types:
black clayey vertisols of volcanic origin (hereafter ‘‘clayey
soils’’), comprisingw35% of Laikipia, and red sandy aridosols
derived from quartzite (hereafter ‘‘sandy soils’’), comprising
the remaining 65% of Laikipia [14]. Although elephant abun-
dances are similar between clayey and sandy soils [15],
each soil type harbors a distinctive community of woody
plants. On clayey soils, A. drepanolobium occurs in virtual
monoculture, typically accounting for R95% of the overstory
vegetation [16]. Acacia drepanolobium is a myrmecophyte
(ant-plant), providing both housing (swollen thorn domatia)
and food (extrafloral nectar) for symbiotic ants. Four species
of ants (Crematogaster mimosae, C. nigriceps, C. sjostedti,
and Tetraponera penzigi) compete for exclusive access to
host plants and protect host trees (to varying degrees) by
swarming, biting, and stinging intruders [17]. Tree communi-
ties occurring on sandy soils are more diverse, with the 3–5
most common woody plant species typically accounting for
no more than 80% of the canopy in a given locale. Acacia
drepanolobium is virtually absent from sandy soils, consti-
tuting <0.1% of the overstory.
Between 1992 and 2002, elephant abundances throughout

the Laikipia ecosystem increased approximately 5-fold [18]
(P. Omondi, personal communication) and continued to
increase over the course of our study (unpublished data;
W. Giesen, personal communication; Figure S2]. To assess
the impact of increased elephant densities on tree assem-
blages, we quantified changes in tree cover both inside and
outside of plots excluding megaherbivores (elephants and
less-common giraffe [Giraffa camelopardalis]) on sandy
and clayey soils at the Lewa Wildlife Conservancy in central
Kenya (37�410E, 0�20N, Figure S1). Changes in tree cover
were determined by comparing high-resolution (60 cm) Quick-
bird satellite images (Digital Globe) acquired in 2003 and 2008.
Between 1992 and 2002, six double-strand, electrified fences
were erected on Lewa to exclude megaherbivores from
parcels of land while allowing other wildlife species to freely
pass beneath the 2 m high fence strands. Four fences were
established in sandy soil, and two fences were established in
clayey soil (Table S1). Hereafter, we refer to megaherbivore
exclosures as elephant exclosures, because elephants (and
not giraffes) were responsible for the vast majority of differ-
ences arising from megaherbivore browsing on both clayey
and sandy soils (Tables S2 and S3). Control plots paired with
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Figure 1. Elephant Herbivory on Acacia spp.

Recent catastrophic herbivory by elephants on the

nonmyrmecophyte Acacia mellifera (foreground) sur-

rounded by unbrowsed individuals of the myrmecophyte

A. drepanolobium.

Figure 2. Landscape Change on Lewa Downs Conservancy and Mpala

Change in tree cover in elephant exclusions (black bars) and paired controls

(white bars), 2003–2008. Virtually all trees on sandy soil are nonmyrmeco-

phytes; w95% of trees on clayey soil are the myrmecophyte A. drepano-

lobium. Means (695% confidence intervals) from sandy soil represent

averages across four exclusion plots and their paired controls from Lewa.

Means from clayey soil represent averages across six exclusion plots and

their paired controls at KLEE and two exclusion plots and their paired

controls at Lewa. Letters associated with bars represent statistically signif-

icant differences between groups (p < 0.05).
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elephant exclosures were sampled from 200 m wide buffer
strips around each exclosure (see ‘‘Satellite Imagery and Aerial
Photos’’ in Experimental Procedures).

To increase our sample sizes within clayey soil habitats, we
further quantified changes in tree cover at the Kenya Long-
term Exclusion Experiment (KLEE) at the Mpala Research
Centre in central Kenya (36�520E, 0�170N, Figure S1) using
a single Quickbird satellite image from June 2003 (Digital
Globe) and a high-resolution (30 cm) aerial photograph
(Ramani Communications) from December 2007. Established
in 1995, KLEE consists of three replicate blocks, each of which
contains two plots accessible to all wildlife, two plots acces-
sible to all wildlife except megaherbivores, and two plots
from which all wildlife are excluded. KLEE occurs entirely on
clayey soil.

Between 2003 and 2008, tree cover diverged significantly
between elephant exclosures and control plots on sandy soil
at Lewa (F1,6 = 9.27, p = 0.02). Absolute tree cover increased
by 6.0% in response to elephant exclusion (from 25.3% in
2003 to 31.3% in 2008; Figure 2) while simultaneously
decreasing by 8.3% within control plots (from 24.7% in 2003
to 16.6% in 2008; Figure 2). The decline in tree cover in control
plots coincided with an w2.5-fold increase in elephant densi-
ties at Lewa (Figure S2). In 2003, tree cover within elephant
exclosures and control plots on clayey soils did not differ
between Lewa and KLEE, nor did change in tree cover
between 2003 and 2008 differ significantly between Lewa
and KLEE (see ‘‘Analysis of Remotely-Sensed Imagery’’ in
Supplemental Experimental Procedures). Thus, we pooled
sites in our analysis for tree cover within elephant exclosures
on clayey soils. Between 2003 and 2008 (2007 at KLEE), tree
cover did not change significantly between elephant exclo-
sures and control plots on A. drepanolobium-dominated
clayey soil at Lewa and KLEE (exclosures: 26.5%–23.9%;
controls: 22.5%–22.8%; F1,8 = 0.90, p = 0.37; Figure 2), nor
did the change in tree cover inside versus outside elephant
exclosures differ significantly from zero, despite increasing
elephant numbers on both Lewa and Mpala (Figure S2).

To explore whether differential change in tree cover was due
to ants or other factors associated with sandy versus clayey
soils, we conducted ground surveys for the
incidence of browse on clayey soils. Ground
surveys revealed that elephants preferred to
browse on nonmyrmecophytes (Tables S2
and S3), thereby reducing tree cover of subor-
dinate (i.e., nonmyrmecophytic) woody plant
species (multivariate analysis of variance
[MANOVA] for megaherbivore effect on subor-
dinate species: Wilks’ l9,4 = 0.003, p < 0.0001;
p < 0.01 for univariate F tests on five most
abundant nonmyrmecophytes; Figure 3). Fur-
ther, and consistent with analysis of remotely
sensed data, ground surveys confirmed rela-
tively low levels of browsing on A. drepano-
lobium by elephants (Tables S2 and S3) and
nonsignificant impacts of elephants on tree
cover of A. drepanolobium (p = 0.27; Figure 3). Other (nonele-
phant) browsers reduced cover of a single subordinate
species (Rhus natalensis; Wilks’ l9,4 = 0.05, p = 0.03; univariate
F test for R. natalensis: p = 0.01).
To directly establish whether plant defense by Acacia ants

influenced elephant browsing of host A. drepanolobium trees,
we conducted a 12 month in situ ant removal experiment
2.5 km east of KLEE. We reduced ant abundances on host
plants by removing approximately 100%, 60%, or 30% of
existing colony members on individual trees, and then we
assessed levels of elephant damage on these trees relative
to unmanipulated plants after a 1 year period. The level of



Figure 3. Differences in Tree Cover as a Function of Herbivore Treatment

Percent tree cover of the myrmecophyte A. drepanolobium (Acdr) and

nonmyrmecophytes Cadaba farinosa (Cafa), Balanites aegyptiaca (Baae),

A. mellifera (Acme), Lycium europaeum (Lyeu), and Rhus natalensis (Rhna)

by herbivore treatment at KLEE in 2008. Black bars (6standard error of the

mean) represent plots from which all browsers have been excluded, light

gray bars represent plots from which only elephants have been excluded,

and dark gray bars represent plots accessible to all browsers. *p < 0.01 is

statistically significant between plots.

Figure 4. Responses of Elephant Browsing to In Situ Ant Removal from

Trees

The number of A. drepanolobium branches browsed by elephants as a

function of ant activity levels on trees from the ant-removal experiment

(c2
1 = 28.41, p < 0.01).

Figure 5. Free-Choice Feeding Trials with Elephants and Acacia spp.

Best-fitting Cox regression models as a function of food type: control

A. drepanolobium (black triangles), ant-removal A. drepanolobium (black

circles), control A. mellifera (red circles), ant-addition A. mellifera (red trian-

gles). Solid and dashed thin lines represent 95% confidence intervals for

probability of use of branches with and without ants, respectively.

Elephants preferred branches without ants (b = 3.61, p < 0.01) but did not

distinguish between tree species (b = 0.33, p = 0.57). The points in the graph

are fitted from the model.

Current Biology Vol 20 No 19
1770
elephant browsing on host plants was significantly and nega-
tively related to ant abundances on host plants (negative bino-
mial regression: c2

1 = 28.41, p < 0.01; Figure 4).
To further investigate whether protection by ant symbionts

was the causal mechanism underlying observed patterns of
landscape change, we conducted free-choice feeding trials
on six 8-year-old elephants at the Sheldrick Wildlife Trust
Reintegration Centre in Tsavo National Park, Kenya. We pre-
sented elephants with four groups comprised of w20 1.5–2 m
branches: (1) Acacia drepanolobium control, (2) A. drepano-
lobium ant removal, (3) A. mellifera control, and (4) A. mellifera
ant addition. Browse surveys on sandy soils from Lewa
demonstrated that elephants neither prefer nor avoid A. melli-
fera relative to other tree species on sandy soil (Table S4); thus,
A. mellifera represents a typical nonmyrmecophyte from the
perspective of an elephant. Groups of branches were spaced
10 m apart from each other, and their position in the elephant
corral was determined randomly. Elephants were equally likely
to feed on A. drepanolobium and A. mellifera in the absence of
ants (Cox regression: b = 0.33, p = 0.57), indicating that,
without its ants, A. drepanolobium is fundamentally palatable
to elephants. Similarly, elephants avoided branches of both
tree species if ants were present (Cox regression: b = 3.61,
p < 0.01), demonstrating that symbiotic ants can deter
elephant herbivory when alternative food plants are available
(Figure 5).

Elephants are known to avoid swarming attack by other
hymenopterans (bees [19]). The efficacy of ant defense may
result from a combination of high densities of ants on host
plants (up to 90,000 workers on some trees [20]), the species
of ant occupant (C. mimosae and C. nigriceps swarm equally
aggressively in response to disturbance [21] and occupy
w70%and 80%of trees at KLEE [22] and Lewa [‘‘LewaBrowse
Surveys’’ in Supplemental Experimental Procedures]), and the
tendency of ants to attack areas of thin skin and mucous
membranes by biting down and holding fast with their
mandibles. Further, elephants are unique in that their nostrils
are located away from their mouths at the apex of their feeding
apparatus (trunk), rendering them vulnerable to swarming
insects. In contrast, giraffes use their long, prehensile tongues
to swipe away ants from their muzzles (unpublished data).
Thus, despite their thick dermis, elephants are highly sensitive
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around their eyes and on the inner membranes of their trunks
[23]; attack by scores of biting ants probably serves as a strong
deterrent.

Classic experiments by Janzen [24] and subsequent studies
by others [25–28] have elegantly demonstrated the capacity of
symbiotic ants to prevent or greatly reduce herbivory and
competition for light, thereby promoting the growth and
survival of individual host plants. Ours is the first study to
demonstrate that ant-plant symbioses can stabilize landscape
structure at larger spatial scales by protecting adult trees from
catastrophic herbivory. Because ants reduce palatability of
their host trees, selective browsing on nonmyrmecophytes
is at least partly responsible for creating the virtual monocul-
tures of A. drepanolobium that typify black clayey soils in
Laikipia [27, 29] and other regions of East Africa [10–13, 28].
A major challenge for the future is elucidating why A. drepano-
lobium is restricted to clayey vertisols, such that a diversity of
nonmyrmecophytes thrives on other soil types. We hypothe-
size that characteristics of sandy soils (e.g., particle size,
nutrient content, infiltration, etc.) favor nonmyrmecophytes
and interact strongly with browsing to promote segregation
of trees (A. drepanolobium and other myrmecophytes versus
nonmyrmecophytes) across soil types (e.g., see [30]). In light
of this, we expect that, on clayey soils, other determinants of
savanna structure (i.e., rainfall and fire) or mortality factors
affecting early life stages of trees (e.g., seeds, seedlings) will
override browsing as drivers of tree populations, where plant
defenses nullify elephants as important agents of mortality
on adult trees [31].

Savannas typically are envisaged as unstable or disequilib-
rial systems in which climatic variability or disturbances
generate the tree-grass mixtures that typify these ecosystems
[1–3]. In Africa, browsing and killing of trees by elephants is
often a critical force underlying the coexistence of trees and
grasses [4–8]. Throughout much of their historic range,
however, declines in elephant populations have triggered
extensive increases in tree numbers, shifting open savannas
to closed-canopy woodlands [8]. Elsewhere, and typically in
response to confinement within protected areas, elephants
have become ‘‘compressed,’’ have overexploited trees, and
have shifted savannas toward structurally simplified grass-
lands [8, 32]. Our study highlights the stabilizing effect that
ant symbionts can confer on tree cover over expansive spatial
scales. In sum, our experiments show that ant symbionts
protect against catastrophic herbivory, effectively buffering
a dominant tree against top-down control by megaherbivores.
Because tree cover strongly regulates a host of ecosystem
processes, including carbon storage, fire-return intervals,
food web dynamics, nutrient cycling, and soil-water relations
in our system [33, 34] and others [35, 36], these tiny body-
guards likely exert powerful indirect effects at very large
spatial and temporal scales. As elephants and other large
mammals in Africa exhibit chronic declines in some habitats
and overabundance in others, identifying the ecological
consequences of such landscape change remains an impor-
tant challenge for wildlife managers in the future.

Experimental Procedures

Satellite Imagery and Aerial Photos

At Lewa, control plots paired with elephant exclosures were sampled from

200 m wide buffer strips around each exclosure, subject to the constraint

that the buffer strip occurred entirely within Lewa boundaries. When an

elephant exclosure abutted a neighboring property, we expanded the width

of buffer strips to compensate for the area not sampled in that property.
At KLEE, elephant exclosures consisted of the central hectare (ha) within

each 4 ha fence.

KLEE Browse Surveys

From July 2007 to September 2007 at KLEE, we recorded canopy breadth,

height, and diameter at breast height (DBH) on all individuals of the subor-

dinate woody species (i.e., nonmyrmecophytes; n = 721). We paired each

of the 721 individual trees with the nearest neighboring A. drepanolobium,

subject to the constraint that the diameter of the A. drepanolobium was

within 5 cm of the subordinate individual with which it was paired, and we

recorded canopy breadth, height, DBH, and incidence of browsing. We

used MANOVA to test for the effects of megaherbivores, wildlife, and cattle

on percent tree cover of A. drepanolobium and the five most common,

subordinate woody species: A. mellifera, Balanites aegyptiaca, Cadaba

farinosa, Lycium europaeum, and Rhus natalensis. In addition, we included

replicate as a fixed effect (random effects are extremely difficult to imple-

ment and interpret in MANOVA) in our analysis, because tree cover at

KLEE increases from north to south. For each individual in the six plots

accessible to megaherbivores (n = 332), we recorded the incidence of

browsing by megaherbivores (elephant and giraffe). We ignored elephant

browsing >1 year old, as evidenced by chalky, dull-colored wood. We

used log-linear models to calculate odds ratios of browse by elephant

and giraffe on each of the fivemost common nonmyrmecophytes (Table S3).

Ant-Removal Experiment

We removed ant colonies from host plants by inundating the host plant with

smoke generated by burning dry grass in a bucket underneath the tree.

Crematogaster mimosae displays an evacuation behavior when inundated

by the smoke from burning grass, in which workers carry the majority of

brood, eggs, pupae, winged reproductives, and queens from swollen thorn

domatia into cracks in the soil at the base of the host plant over the course of

45–60min. During smoke inundation, wemade a rough approximation of the

total number of workers on each tree. We then imposed treatments imme-

diately following smoke inundation, either completely barring ants from

recolonizing trees by applying a Tanglefoot sticky barrier at the base of

the host plant (full ant removal) or allowing approximately 1/3, 2/3, or the

entire colony to recolonize the host plant prior to applying a Tanglefoot

barrier (for the 2/3 removal, 1/3 removal, and control treatments, respec-

tively). On control trees, two small (6 cm) dead branches were wired to trees

across the sticky barrier to allow ants to move freely across the sticky

barrier.

Following the imposition of treatments, we then assayed trees for relative

levels of ant defense at 6 and 12 months by disturbing a randomly chosen

swollen thorn on each of two branches per tree (one in each of the north

and south cardinal directions) and counting the number of workers swarm-

ing onto the tip of the uppermost spine of the disturbed swollen thorn over

a 30 s period. Two researchers conducted these assays so that swollen

thorns on two separate branches could be disturbed simultaneously. Over-

all levels of ant activity on trees were calculated as the average of these

activity assays. Ant activity at 12 months was significantly correlated with

ant activity at 6 months (r = 0.64, p < 0.0001), and our treatments were effec-

tive in generating a range of ant activities (Table S5). We then resurveyed

each tree at the end of 12 months for browse damage inflicted by both

elephants and nonelephant browsers.

Free-Choice Feeding Trials

We cut 1.5–2.0 m branches of A. drepanolobium and A. mellifera from trees

at the periphery of Tsavo National Park near the town of Voi. At the time of

collection, all A. drepanolobium in our feeding trials were inhabited by the

ant C. nigriceps. We removed ants and swollen thorns from A. drepano-

lobium with wire cutters. Branches were transported to the holding corral

and were presented to elephants within 2 hr of collection. Ants were added

to A. mellifera by immersing branches for 5 min in a metal drum into which

the ants and swollen thorns from the ant removal branches had been

collected. A single observer, positioned w20 m from groups of branches,

recorded data on the number, type, and order of foods taken over a 1 hr

period. Groups of branches were randomly placed 10 m apart within 10 m

of the entrance of the holding corral.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, two figures, and five tables and can be found with this article online

at doi:10.1016/j.cub.2010.08.015.
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