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1  | INTRODUC TION

DNA barcoding (Hebert, Cywinska, Ball, & DeWaard, 2003) is a tool 
to identify species and infer the ecological and evolutionary relation-
ships between them. Determining that a “barcode gap” is present 

at a locus enables researchers to reliably differentiate species from 
each other. Biologists use DNA barcodes to study food webs 
(Pompanon et al., 2012), biological invasions (Dejean et al., 2012), 
and for biomonitoring (Baird & Hajibabaei, 2012), wildlife forensics 
(Dawnay, Ogden, McEwing, Carvalho, & Thorpe, 2007), and natural 
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Abstract
Applications of DNA barcoding include identifying species, inferring ecological and 
evolutionary relationships between species, and DNA metabarcoding. These applica-
tions require reference libraries that are not yet available for many taxa and geo-
graphic regions. We collected, identified, and vouchered plant specimens from Mpala 
Research Center in Laikipia, Kenya, to develop an extensive DNA-barcode library for 
a savanna ecosystem in equatorial East Africa. We amassed up to five DNA barcode 
markers (rbcL, matK, trnL‐F, trnH–psbA, and ITS) for 1,781 specimens representing up 
to 460 species (~92% of the known flora), increasing the number of plant DNA bar-
code records for Africa by ~9%. We evaluated the ability of these markers, singly and 
in combination, to delimit species by calculating intra- and interspecific genetic dis-
tances. We further estimated a plant community phylogeny and demonstrated its 
utility by testing if evolutionary relatedness could predict the tendency of members 
of the Mpala plant community to have or lack “barcode gaps”, defined as disparities 
between the maximum intra- and minimum interspecific genetic distances. We found 
barcode gaps for 72%–89% of taxa depending on the marker or markers used. With 
the exception of the markers rbcL and ITS, we found that evolutionary relatedness 
was an important predictor of barcode-gap presence or absence for all of the markers 
in combination and for matK, trnL‐F, and trnH–psbA individually. This plant DNA bar-
code library and community phylogeny will be a valuable resource for future 
investigations.
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product validation (Filonzi, Chiesa, Vaghi, & Marzano, 2010). Genetic 
information provided by DNA barcodes can also be used to estimate 
phylogenies that yield insights into community assembly (Erickson 
et al., 2014; Swenson, 2012), trait evolution (Gill et al., 2016), and 
lineage diversification (Polato et al., 2018). To attain this wide range 
of uses, investigators rely upon the availability of DNA-barcode li-
braries, which do not yet exist for many taxa and for many of the 
world's most biodiverse regions.

As of January 2019, the Barcode of Life Data System (BOLD) 
(Ratnasingham & Hebert, 2007) included 20,867 records from vas-
cular plant specimens in Africa. Although Africa comprises ~20% of 
the global landmass and harbours ~15% of the global plant diversity 
(Linder, 2014), African plants comprise only ~8% of the vascular plant 
records available in BOLD. Within Africa, most of the available DNA 
barcodes for plants are from Western and Southern Africa (13,998 
specimens; 67% of African specimens) (Bezeng et al., 2017; Lahaye 
et al., 2008; Parmentier et al., 2013). These global and continental bi-
ases in the availability of genetic resources for plants limit both basic 
and applied research priorities in Africa (Daru, Berger, & Wyk, 2016).

Existing African plant DNA barcodes have helped resolve the 
systematics of ecologically and economically important taxa, in-
cluding rosewoods (Hassold et al., 2016), acacias (Boatwright, 
Maurin, & Bank, 2015; Kyalangalilwa, Boatwright, Daru, Maurin, & 
Bank, 2013), aloes (Daru et al., 2013; Manning, Boatwright, Daru, 
Maurin, & Bank, 2014), and the Combretaceae (Gere et al., 2013; 
Jordaan, Wyk, & Maurin, 2011a, 2011b; Maurin, Chase, Jordaan, & 
Bank, 2010). Researchers in the field of community phylogenetics 
(also called phylogenetic community ecology), have used African 
plant DNA barcodes to understand plant community responses to 
herbivory (Yessoufou et al., 2013), classify biogeographical regions 
of Southern Africa (Daru, Bank, et al., 2016), and to assess the evo-
lutionary history of African cycads (Yessoufou, Bamigboye, Daru, & 
Bank, 2014), underground trees (geoxyles) (Maurin et al., 2014) and 
thorny savanna plant assemblages (Charles-Dominique et al., 2016). 

Increasing the taxonomic and geographic coverage of DNA barcodes 
for African plants will enrich our understanding of these species, 
communities, and ecosystems.

In equatorial East Africa, extensive research into conservation 
biology and the structure and function of savanna ecosystems has 
taken place at the Mpala Research Centre (MRC) in the Laikipia 
Highlands of central Kenya (0.293 N, 36.898 E; 1,700–2,000 m 
a.s.l.; Figure 1). This ~200 km2 unfenced conservancy and working 
ranch sustains diverse wildlife and domestic livestock species, and 
is the site of several long-term manipulative experiments that aim 
to elucidate the effects of herbivory and environmental change on 
semi-arid savanna ecosystems (Goheen et al., 2018). These stud-
ies include the Kenya Long-term Exclosure Experiment (KLEE) 
(Young, Okello, Kinyua, & Palmer, 1998), the Glade Legacies And 
Defaunation Experiment (Augustine & McNaughton, 2006), and 
the Ungulate Herbivory Under Rainfall Uncertainty experiment 
(UHURU) (Goheen et al., 2013; Kartzinel et al., 2014). Additionally, 
MRC hosts the only savanna site currently participating in the Forest 
Global Earth Observatory (ForestGEO) network; accordingly, botan-
ical research at MRC contributes to global comparisons of long-term 
vegetation dynamics.

In 2012, we established a pipeline for the collection of plant 
vouchers and DNA barcoding at MRC (Kartzinel et al., 2015). We 
collected both woody and herbaceous plant specimens throughout 
the property and neighbouring landscapes. For each morphospe-
cies identified in the field, we sequenced up to five plant DNA-bar-
code markers for one to four specimens per taxon. At the National 
Museums of Kenya's East Africa Herbarium (EA), expert botanists 
examined specimens and made taxonomic determinations, revis-
ing field-based morphospecific identifications as necessary. Here, 
we present our DNA barcode reference library for MRC, estimate 
a community phylogeny, and demonstrate the utility of these re-
sources by testing if relatedness can predict the presence or absence 
of barcode gaps within this plant community.

F I G U R E  1   Localities where plant 
specimens were collected from Mpala 
Research Centre and surrounding areas in 
Laikipia, Kenya. Precise location data are 
available for 1,690 of the 1,781 specimens 
for which we successfully sequenced 
at least one marker. This data set is the 
result of extensive botanical searches 
across Mpala's extensive road network, 
and these points represent the subset of 
locations where specimens representing 
a novel species for our data set were first 
collected
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2  | MATERIAL S AND METHODS

2.1 | Site description, specimen collection, and 
taxonomic identification

The vegetation at MRC includes semi-arid savanna, acacia bushland, 
and wooded grasslands with interspersed riparian zones and rocky 
hills. On average, temperatures range from 11 to 24°C and pre-
cipitation totals ~600 mm/year, accumulating mainly during three 
rainy periods (April–May, July–August, November) (Franz, Caylor, 
Nordbotten, Rodríguez-Iturbe, & Celia, 2010). Distinct habitat types 
occur on soil types characterized as red sandy loams (northern and 
southeastern areas), heavy-clay “black-cotton” vertisols (southwest-
ern), and transitional soils between red-sand and black-cotton habi-
tats (Pringle, Prior, Palmer, Young, & Goheen, 2016). This diversity 
of habitats types is represented across the ~200 km2 MRC land-
scape, and similar soil types supporting similar plant communities 
occur throughout the 9,500 km2 Laikipia region and more broadly 
across East Africa, including Nairobi National Park and parts of the 
Serengeti-Mara ecosystem.

From 2012 until 2018, we sampled plant species as extensively 
and thoroughly as possible from all vegetation zones in this eco-
system. Initial collections occurred within the UHURU (Goheen et 
al., 2013; Kartzinel et al., 2014) and KLEE (Young et al., 1998) ex-
periments, where plant surveys are conducted at regular intervals. 
Subsequent collections spanned the extensive road network of 
MRC and the surrounding landscapes. Collection efforts were led 
by parataxonomists with >10 years of botanical research experience 
at MRC, with specialized training directed by botanical experts at 
EA, and supplemented by input from ecologists at multiple institu-
tions. We collected voucher specimens from three individuals per 
morphospecies and deposited them in the EA, the Smithsonian 
Institution herbarium (US), and MRC's research and teaching collec-
tion. A tissue sample for genetic analyses was collected from each of 
these specimens, along with up to one additional individual from the 
field (not vouchered).

At the time of collection, we provisionally identified the speci-
mens, took photographs, and recorded GPS coordinates. Multiple 
researchers contributed to this collection effort and not all speci-
mens could reliably be identified to species upon initial collection; 
consequently, some taxa were collected on multiple occasions 
and we obtained DNA barcodes from as many as 16 specimens 
per taxon. Expert botanists at the EA identified the specimens 
to the finest taxonomic level possible (~96% species-level iden-
tifications). We reserve use of the word “species” to refer to the 
433 taxa assigned accepted Latin binomials in our data set, and we 
more inclusively use the word “taxa” with reference to these spe-
cies and an additional 27 provisionally distinguishable taxonomic 
entities that are currently only resolved to family- or genus-level 
(N = 460 taxa in total). We present these data using the taxonomic 
nomenclature currently recognized by the Angiosperm Phylogeny 
Group (Chase et al., 2016) and The Plant List (2013). Because this 
nomenclature follows the controversial splitting of African Acacia 

spp. into the genera Senegalia and Vachellia (Smith & Figueiredo, 
2011), these latter names appear in our tables and figures, but we 
refer to “acacias” inclusively.

2.2 | Generation of DNA barcodes

We used standard protocols to bidirectionally sequence five markers 
commonly used for plant DNA barcoding: rbcL, matK, trnL‐F, trnH–
psbA, and ITS (protocols in Text S1; primers in Table S1) (Fazekas, 
Kuzmina, Newmaster, & Hollingsworth, 2012; Ivanova, Fazekas, & 
Hebert, 2008; Kartzinel et al., 2015; Kuzmina et al., 2017). Sequences 
(N = 4,696) from a subset of specimens that we collected between 
2012 and 2015 were initially included in a reference library used to 
support a DNA-metabarcoding study of herbivore diets (Kartzinel 
et al., 2015). The current data set includes 1,762 new sequences 
and improvements in the accuracy of the taxonomic determinations 
that we completed between 2015 and 2018. To build consensus se-
quences, we trimmed and assembled forward and reverse reads in 
geneious R11 (Kearse et al., 2012). The most current version of these 
DNA barcode sequences is provided as a publicly accessible data set 
on BOLD.

2.3 | Sequence alignment

To align DNA sequences for genetic-distance, barcode-gap, and 
phylogenetic analyses, we used the R (R Core Team, 2017) pack-
age decipheR (Wright, 2016). These plant DNA barcode data sets 
included substantial sequence-length variation arising both from 
insertion-deletion polymorphisms and incomplete Sanger se-
quence reads. We considered including all sequences in these data 
sets meeting the minimum acceptable sequence-length thresholds 
set by Genbank (100 bp for coding genes and 200 bp for noncod-
ing genes), but found that confidently establishing significant se-
quence homology in alignments required us to reduce the number 
of short sequences in further analyses. We therefore excluded 
the shortest ~25% of sequences obtained for each marker from 
further analyses. To evaluate the identities of specimens that are 
not identified to the species-level (N = 27 out of 460 taxa), rep-
resentatives of these taxa were included in the alignment used 
to estimate the community phylogeny. However, to prevent taxo-
nomic uncertainty from influencing genetic-distance and barcode 
gap analyses, we included only specimens that had been identified 
to species-level (N = 433 species).

For rbcL, we aligned all sequences simultaneously using 
alignseqs(). For matK, we used aligntRanslation() to align the amino 
acid translation of our DNA sequences and back-translated to DNA. 
Because distantly related species often have highly divergent se-
quences for trnL‐F, trnH–psbA, and ITS, we split the sequence data 
to align by family using the R package phylotools (Zhang, 2017) and 
aligned using alignseqs(). For analyses considering data from all mark-
ers together, we concatenated all alignments to create a superma-
trix of all markers, including markers that we had split into separate 
alignments by plant family (Kress et al., 2009).
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2.4 | Calculation of intra‐ and interspecific 
genetic distances

To assess levels of genetic variation within and among plant 
species in our data set, we calculated uncorrected intra- and in-
terspecific genetic distances for each marker separately (rbcL, 
matK, trnL‐F, trnH–psbA, and ITS) and for all markers together 
(rbcL + matK +trnL‐F + trnH–psbA + ITS) using distancematRix() in 
decipheR (Wright, 2016). To limit the influence of missing data, ter-
minal gaps, gap-to-letter matches, and gap-to-gap matches were 
not included in the calculation of distances. Pairwise comparisons 
of genetic distances among all species were conducted for the 
global alignments of rbcL, matK, and the supermatrix of all mark-
ers. By-family alignments for trnL‐F, trnH–psbA, and ITS allowed 
for pairwise comparisons at the family level only. We evaluated 
the presence of “barcode gaps” based on these genetic distances, 
which can be identified based on the disparities between the max-
imum intraspecific and minimum interspecific genetic distances 
(Hebert et al., 2003).

2.5 | Estimation of community phylogeny

We built an alignment that included only a single specimen per 
taxon, choosing the specimen represented by the most available 
sequence data across at least three markers. We tested for the 
best model of nucleotide substitution and partitioning scheme to 
use in subsequent phylogenetic reconstruction steps using the 
program paRtition findeR 2 (Lanfear, Frandsen, Wright, Senfeld, & 
Calcott, 2016). Based on AICc, the best model of nucleotide sub-
stitution was GTR + I + Γ which we applied to each of the follow-
ing partitions: (a) rbcL codon position one, (b) rbcL codon position 
two, (c) rbcL codon position three, (d) matK codon positions one 
and two, (e) matK codon position three, (f) trnL‐F, (g) trnH–psbA, 
and (h) ITS. To ensure accurate reconstruction of established 
phylogenetic relationships, we constrained family-level relation-
ships known a priori using the “R20120829” tree, available from 
phylomatic (Webb & Donoghue, 2005) in the R package bRRanch-
ing (Chamberlain, 2016). Using the supermatrix, constraint tree, 
GTR + I + Γ model of nucleotide substitution, and partitioning 
scheme determined using paRtition findeR 2, we ran a maximum-
likelihood analysis to estimate a phylogeny in the program Raxml 
(Stamatakis, 2014) through the CIPRES Science Gateway (Miller, 
Pfeiffer, & Schwartz, 2010). To maximize the Raxml phylogeny's 
utility for this and future studies, we needed to rescale its branch 
lengths to represent absolute time. We applied phylocom's bladj() 
function (Webb, Ackerly, & Kembel, 2008) to the Raxml phylogeny 
based on 36 fossil calibration dates (Bell, Soltis, & Soltis, 2010; 
Gastauer & Meira-Neto, 2016). We used the R package monophy 
(Schwery & O'Meara, 2016) to test the monophyly of genera. For 
this analysis, we maintained supported nodes and collapsed un-
supported nodes (bootstrap support <63) to polytomies (Farris, 
Albert, Kallersjo, Lipscomb, & Kluge, 1996).

2.6 | Testing for phylogenetic signal in barcode gaps

Phylogenetic signal is the tendency of closely related species 
to resemble each other because of shared evolutionary history 
(Felsenstein, 1985). While phylogenetic signal is ubiquitous, esti-
mates of weak or no phylogenetic signal can result from some evo-
lutionary processes (Hansen & Martins, 1996) and properties of data 
sets such as incomplete taxonomic sampling (Blomberg, Garland, & 
Ives, 2003; Cavender-Bares, Keen, & Miles, 2006). Thus, the presence 
of phylogenetic signal in a particular local plant assemblage cannot 
be assumed. To demonstrate the utility of this phylogeny for stud-
ies of phylogenetic community ecology, we tested for phylogenetic 
signal in the presence or absence of barcode gaps for each marker 
and for all markers combined using continuous-time Markov models 
of discrete-trait evolution using the R package geigeR (Harmon, Weir, 
Brock, Glor, & Challenger, 2008). Specifically, we compared model 
fits when the tree-transformation parameter λ (Pagel, 1999) was set 
to zero (no influence of phylogeny) against those obtained when λ 
was determined by maximum likelihood (potential influence of phy-
logeny). Significantly better model fits when the tree transforma-
tion parameter λ was determined by maximum likelihood indicate 
significant phylogenetic signal in barcode gap presence or absence. 
Significant phylogenetic signal in barcode gap presence or absence 
in the flora of MRC would allow us to identify clades in which DNA-
based species identifications would be straightforward or problem-
atic using these markers.

3  | RESULTS

3.1 | Collection and sequencing success

Of the approximately 500 plant species known or thought to occur 
at the MRC, to date we have obtained 1,843 specimens from at least 
433 species and an additional 27 provisionally distinguished taxa 
currently resolved to family- or genus-level (N = 460 taxa in total; 
~92% of the known flora). These specimens belong to two phyla, 
three classes, 29 orders, 66 families, and 245 genera. Collectively, 
this barcode library includes data for 1,781 specimens, including 
1,523 rbcL, 1,197 matK, 1,595 trnL‐F, 1,260 trnH–psbA, and 883 ITS 
sequences. All sequence data have been published on BOLD as “DS-
UHURUR2” (dx.doi.org/10.5883/DS-UHURUR2) and on Genbank 
(accessions in Data set S1).

3.2 | Genetic distances and barcode gaps

The information provided by all markers combined in the superma-
trix revealed barcode gaps for 311 of the 429 well-identified spe-
cies that we assessed (72%). Considering each of the five markers 
separately, 73%–89% of species exhibited a barcode gap (rbcL = 231 
of 316 (73%), matK = 243 of 315 (77%), trnL‐F = 257 of 324 (79%), 
trnH–psbA = 227 of 289 (79%) and ITS = 159 of 178 (89%); Figure 2; 
Data set S2).
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3.3 | Barcode phylogeny and phylogenetic signal in 
barcode gaps

Our final phylogeny includes 324 taxa (70%) for which we obtained 
sufficiently long sequence data (Figure 3). We visualized the results 
in detail using subtrees for the monocots (Figure S1), superastrids 
(Figure S2), and superrosids (Figure S3). Of the 186 genera included 
in the tree, 40 were monophyletic, 20 were not monophyletic, and 
126 were monotypic (precluding tests of monophyly). Many of 
the nonmonophyletic genera were members of the orders Poales, 
Asterales, Lamiales, and Malvales (Figures S4–S6).

We detected significant phylogenetic signal in the presence or 
absence of barcode gaps for all markers together (χ2 = 14.976, df = 1, 
p < 0.001), and singly for matK (χ2 = 21.085, df = 1, p < 0.001) and 
trnH–psbA (χ2 = 6.746, df = 1, p = 0.009). Phylogenetic signal for 
trnL‐F (χ2 = 3.122, df = 1, p = 0.077) was marginally significant. We 
did not detect significant phylogenetic signal for rbcL (χ2 = 2.357, 
df = 1, p = 0.125) or ITS (χ2 = 1.875, df = 1, p = 0.171). Thus, for four 
of the six markers or marker combinations tested, relatedness was 

an important predictor of whether a particular species exhibits a 
barcode gap in this community. Orders with many species lacking 
barcode gaps included Poales, Malvales, Lamiales, and Fabales (Table 
S2; Figures S7–S12). These classifications corresponded to many 
ecologically important savanna species including grasses (Poaceae), 
sedges (Cyperaceae), acacias (Fabaceae), and mallows (Malvaceae), 
and represent many of the same clades that included nonmonophy-
letic genera in this community.

4  | DISCUSSION

Our DNA barcode data set provides a publicly accessible record 
of an ongoing and long-term botanical inventory of MRC and the 
surrounding region. The concordance between morphological spe-
cies identifications and DNA barcodes indicates that this reference 
library is generally reliable for species identification (72%–89% 
marker resolution, depending on the marker used). Furthermore, the 
robust community phylogeny presented here will enable more de-
tailed analyses of this plant community and local species interactions 
in an evolutionary context. Over time, we expect to increase our bar-
code coverage of the MRC flora and intend to publish updated ver-
sions of record for the data set.

The development of a comprehensive plant DNA-barcode li-
brary for MRC has proven challenging and will require continued 
collection and taxonomic efforts. Some plant species rarely pro-
duce fertile specimens, are only distinguishable by their reproduc-
tive structures, or are dioecious, undescribed, or cryptic (Dick & 
Kress, 2009). Furthermore, even if specimens of all local species 
can ultimately be identified with complete accuracy, DNA barcod-
ing rarely provides perfect discriminatory ability. Here, consistent 
with the limitations reported in other plant DNA-barcode studies 
(Braukmann, Kuzmina, Sills, Zakharov, & Hebert, 2017; Chase et 
al., 2005; CBOL Plant Working Group et al., 2009; Hollingsworth, 
Graham, & Little, 2011; Kress & Erickson, 2007; Kress et al., 2009; 
Kress, Wurdack, Zimmer, Weigt, & Janzen, 2005; Lahaye et al., 2008; 
Li et al., 2015; Newmaster, Fazekas, Steeves, & Janovec, 2008), this 
data set achieves a high degree of taxonomic resolution that is nev-
ertheless imperfect.

Analyses of intra- and interspecific genetic distances and the 
presence or absence of barcode gaps reveal the relative utility of 
different DNA barcode markers and can help identify future re-
search priorities. Phylogenetic signal in barcode gaps indicates that 
the efficacy of DNA barcoding for species identification in this plant 
community can be predicted based on knowledge of the evolution-
ary relationships among species. Species representing diverse and 
abundant savanna plants are particularly prone to the absence of a 
barcode gap, and thus sequencing efforts in the future can be scaled 
up or down depending on the expected marker resolution for the 
species groups of interest. Studies involving easily resolved clades 
might require only a subset of the markers utilized here to achieve 
perfect discrimination capabilities, while other clades might require 
more detailed genomic analyses (Li et al., 2015). Indeed, prime 

F I G U R E  2   Barcode gap plots for species from Mpala Research 
Centre, showing the relationships between the maximum 
intraspecific genetic distance (horizontal axes) and minimum 
interspecific distance (vertical axes) for each DNA-barcode marker 
and all markers combined. A barcode gap is indicated by points that 
fall above the solid line. Points have been made translucent such 
that high densities of points result in darker colours. Numbers on 
upper and lower halves of plots represent the number of species 
with (top) or without (bottom) barcode gaps
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candidates for whole-chloroplast sequencing or “genome skimming” 
(Coissac, Hollingsworth, Lavergne, & Taberlet, 2016) include many 
grasses (Poaceae), sedges (Cyperaceae), acacias (Fabaceae), and mal-
lows (Malvaceae) for which these standard DNA barcoding protocols 
appear insufficient.

This DNA barcode release increases the number of plant DNA 
barcodes from Africa in the BOLD database by 9%, providing a 
valuable resource for research in the region and filling a recog-
nized gap in the availability of genetic resources for East Africa, 
and for drylands and savannas and in general (Daru, Berger, et 
al., 2016). These ecosystems cover more than half of the African 
continent (Werner, 1991) and traverse a variety of temperature, 

rainfall, and soil conditions (House, Archer, Breshears, Scholes, 
& Tree-Grass Interactions Participants, 2003). The plants that 
occur within these ecosystems are shaped by herbivory, fire, 
and land use (Charles-Dominique et al., 2016), and exist at an 
unstable equilibrium that is prone to phase shifts toward a steady 
state as either forest or grassland (Staver, Archibald, & Levin, 
2011). Worldwide, the study of savanna floras is critical because 
although savannas vary in vegetation composition and environ-
mental conditions, their characteristic coexistence of trees and 
grasses provides important habitat for biodiversity and under-
pins human livelihoods (House et al., 2003; Scholes & Archer, 
1997).

F I G U R E  3   Community phylogeny for the plants of Mpala Research Center, Kenya. The size of wedges represents the number of species 
within orders. Four major lineages are shown, including Polypodiopsida (“P”), monocots (“M”), superrosids (“SR”), and superasterids (“SA”). 
Detailed subtrees for 89 monocots, 102 superrosids, and 131 superasterids are shown in Figures S1–S3. Numbers after order names indicate 
the number of species represented
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We expect that this plant DNA-barcode library will support on-
going and future research by providing a well curated taxonomy 
for the local flora and improving opportunities to compare and 
coordinate among the many research programs hosted by MRC. It 
will further support phytogeographical research across Africa and 
worldwide through MRC's participation in the global ForestGEO 
network. Ongoing investigations enabled by the construction of this 
library include the evaluation of putative new species, community 
and comparative phylogenetic analyses, and forensic ecological in-
vestigations through dietary DNA metabarcoding. This research will 
contribute to our collective understanding of savanna biodiversity 
and provide much-needed genetic resources for the region's flora.
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