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MacArthur (1955) first proposed a hypothesis regarding
the relationship between diversity and stability by claiming
that diverse communities enhance ecosystem stability. This
hypothesis was based on Odum’s (1953) qualitative notion
that stability increases as the number of links in a food
web increase. MacArthur reasoned that more choices lead
to less dependence on a particular path and thus more
stability. A variety of views on the diversity-stability hy-
pothesis ranging from agreement to opposition have been
argued from numerous theoretical (May 1972, 1973; Doak
et al. 1998; Tilman 1999; Yachi and Loreau 1999; Lehman
and Tilman 2000) and empirical (McNaughton 1993; Til-
man 1994, 1996; Ives et al. 1999; McGrady-Steed and
Morin 2000; Wootton 2001) perspectives. Although several
studies support the claim that biodiversity regulates sta-
bility, no clear consensus on the validity of the hypothesis
has yet been reached (Cottingham et al. 2001).

Part of the controversy over the diversity-stability hy-
pothesis stems from the multitude of meanings assigned
to stability (Pimm 1984). Mikkelson (1999, p. 483) argued
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that several of these more stringent definitions (e.g., the
mathematical notion of neighborhood stability) create a
“severe a priori bias” against the diversity-stability hy-
pothesis but that definitions of stability based on temporal
variation avoided this bias. And, indeed, most of the cur-
rent research on this debate has focused on this general
notion of stability rather than notions based on equilib-
rium population dynamics (McCann 2000).

Many contend that the answer to the diversity-stability
debate depends on the organizational level at which sta-
bility is measured: community or population (see review
by Cottingham et al. 2001). In essence, the temporal sta-
bility of a population reflects the variation in abundance
(biomass) of a particular species, while the temporal sta-
bility of a community reflects variation in summary or
aggregate properties such as total abundance (biomass).
Thus, a community with high temporal stability would be
characterized by low aggregate variability (sensu Micheli
et al. 1999). Lehman and Tilman (2000) argued that tem-
poral stability at the community level responds differently
to changes in species richness than at the population level.
Specifically, they showed that species diversity increased
the stability of a community but reduced the stability of
individual populations within a community structured by
symmetric competition.

Another point of contention in the diversity-stability
debate has been the relative importance of species richness
versus species composition. Tilman (1997) and Tilman et
al. (1997) demonstrated theoretically that both influence
ecosystem productivity and hence stability, noting that ex-
perimental systems should be designed to separate effects
due to these two factors.

Here, we ask how competitive asymmetries alter the
response of temporal stability to increasing diversity at
both the community and population level. First, we alter
a broken-stick model by mediating resource allocation
among species through competition parameters that de-
cline geometrically. We then examine the effect of limiting
community size and hence species richness by imposing
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threshold resource requirements for species competing for
finite resources under asymmetric competition.

Defining Temporal Stability

In this note, we define temporal stability as mean abun-
dance (biomass), normalized by the standard deviation of
this abundance (biomass), (Lehman and TilmanS p m/j
2000). Let and refer to the temporal stabilityS (n) S (n)i com

of a population of species i and the total community,
respectively, in a particular n-species community. Fur-
thermore, let be the biomass (or abundance) of theB (n)i

ith species and be the total biomass in this com-B (n)com

munity. In a stochastic environment, these quantities will
vary. If distributional properties of the biomass are known,
such as the mean ( ) and variance ( ), then2 2m /m j /ji com i com

temporal stability of a population of species i is

miS (n) p , (1)i
ji

and the temporal stability of the community is

mcomS (n) p . (2)com
jcom

However, if distributional properties of the biomass are
not known, then they must be estimated. In this case,
consider a specific n-species community. Let repre-B (n)i

sent the ith species’ mean biomass and representVar [B (n)]i

the variance estimated from the . Then the populationB (n)i

stability of species i is

B (n)i

Ŝ (n) p , (3)i �Var [B (n)]i

and the community stability is

� B (n),i
iŜ (n) p . (4)com �� Var [B (n)] � � Cov (B , B )i i j

i i(j

Thus, according to this definition, temporal stability in-
creases if either mean biomass increases or total variability
declines. An advantage of this definition of temporal sta-
bility is flexibility; temporal stability of nonequilibrial sys-
tems can be quantified while using wholly nonlinear dy-
namics. Therefore, models need not possess equilibria, nor
do field studies have to assume that a community is in a
state of equilibrium.

Asymmetric Resource Partitioning among Competitors

MacArthur’s (1957) original broken-stick model was con-
structed to predict the relative abundances of species in a
community. Lehman and Tilman (2000) altered this model
to study stability under the assumption that resources were
randomly partitioned among competitors. This variation
stems from the notion that competition at its most basic
level represents the allotment of a limited resource among
species. If one represents the limiting resource as a stick
of unit length, then one can partition this resource among
n species by randomly breaking the stick n times. This
produces pieces of stick: one piece of resource forn � 1
each species, and a leftover piece of unused resource. Sta-
bility can then be calculated by assuming that the relative
abundance of each species is proportional to its piece of
the resource stick (Lehman and Tilman 2000). We extend
this notion of breaking a resource stick into portionsn � 1
by modeling the process with a Dirichlet distribution
(Wilks 1962; Pielou 1981).

Dirichlet distributions are characterized by pa-n � 1
rameters, . If is the random var-D(a , a , … , a , a ) x1 2 n n�1 i

iable designating the length of the ith subinterval, then the
mean, standard deviation, and covariance with are givenxj

by equations (5), (6), and (7), respectively:

ai
m(x ) p , (5)i � ak

a (� a � a )i k i
2j (x ) p , (6)i 2(� a ) (� a � 1)k k

�a ai j
j(x , x ) p . (7)i j 2(� a ) (� a � 1)k k

By definition, each parameter, , of the Dirichlet distri-ai

bution is proportional to the subinterval it defines. By
assuming that the ith species’ ability to capture resources
is expressed by parameter , variation in this parameterai

set implies interspecific asymmetries in resource parti-
tioning. This fact makes the Dirichlet model ideal for stud-
ying stability under the general assumption of asymmetric
competition (Buss 1980; Roxburgh and Bastow 2000).
Similarly, the allocation of resources as unused is accom-
plished by assigning a parameter, , to represent thean�1

inefficiency with which the community uses resources.
Thus, the unused resource is functionally analogous to a
pseudospecies in our model. This congruence is important
because community stability can be computed solely in
terms of the unused resource when one assumes a fixed
limiting resource (i.e., the stick always has unit length):
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Figure 1: Role of asymmetry in the normalized Dirichlet parameters as
a function of the shape parameter q.

m 1 � m 1 � m(x )com ur n�1S (n) p p p , (8)com
j j j(x )com ur n�1

where and refer to the mean and standardm /m j /jcom ur com ur

deviation of the captured resources within the community
and the unused resource, respectively, and and arem(7) j(7)
given by equations (5) and (6). As evident from equation
(8), there are numerous ways to allocate resources asym-
metrically among n species that result in the same com-
munity stability, as long as the communities’ unused re-
source is the same. However, the role of asymmetric
competition is realized in the different population stabil-
ities of the species.

In this note, we introduce asymmetric competition
among species by assuming that a species’ ability to capture
resources declines geometrically according to its rank in
a community comprised of n species (May 1975; Magurran
1988). Let be the proportional amount of resources thatpi

species i can capture. Then assume that

i�1p p q(1 � q) , i p 1, … , n, (9)i

where i is the rank and is the shape parameter0 ! q ! 1
controlling the degree of asymmetry in the geometric de-
cline. This functional form allows us to explore a contin-
uum of communities in which species’ abilities range from
extreme asymmetry (high q value) to evenness (small q
value) all within the same setting. This set of parameters,

, directly determines the Dirichlet parameters, , for{p } {a }i i

the model (fig. 1).
How are communities of competitively asymmetric spe-

cies assembled? We will consider two approaches: system-
atic entry of species into the community according to com-
petitive rank and random entry of species.

To facilitate the comparison between systematic entry
and random entry, we propose the following normalization
of Dirichlet parameters. The set of parameters from{p }i
a community with species richness n is transformed into
the set of Dirichlet parameters, , through a scaling that{a }i
constrains the sum

n�1

a p n � 1. (10)� i
ip1

This normalization allows us to simplify the equations for
stability of a community of n species,

(n � 1 � a )(n � 2)n�1�S (n) p , (11)com an�1

and stability for the population of species i,

a (n � 2)i�S (n) p . (12)i n � 1 � ai

We considered three models under systematic and random
species entry, each differing in how it deals with the unused
component of the resource stick (i.e., ).an�1

Systematic Entry

In this first approach, species were admitted systematically
into the community according to competitive rank. Thus,
a community of five species was comprised of species with
abilities given by , where refers to{p , p , p , p , p ; p } p1 2 3 4 5 ur ur

unused resource. This approach had the advantage of being
analytically tractable but had the disadvantage of not being
able to isolate the effects of diversity and composition on
stability. Two types of communities were simulated (fig.
1): one type consisted of species that were approximately
uniform in their competitive abilities ( ), whereasq p .01
the other type of community was characterized by pro-
nounced asymmetry ( and ). Figures 2 andq p .2 q p .3
3 display results from our models under the assumption
of systematic entry for these communities.
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Figure 2: Predicted effects of asymmetric resource capture based on four versions of the broken-stick model with systematic entry; that is, species
were added to the community according to their rank. Solid line represents uniform distribution of resources among the species on the basis of
uniform capture of resources by species (Lehman and Tilman 2000). Circles represent model UPS in which an average of of resources1/(n � 1)
are unused but species capture resources according to the geometric decline. Plus signs represents model MPS in which the least abundant species
in the sample was chosen as the unused resource pseudospecies. Stars represents model APS in which the pseudospecies was chosen randomly from
the sampled species. Community stability increased with species richness. This effect was heightened and became nonlinear as the asymmetry increased
for both the MPS and APS models.

Uniform Pseudospecies (UPS)

This model assumes that on average the unused resource
totals of the resource stick, whereas all the species1/(n � 1)
share of the total resources. We termed this then/(n � 1)
“uniform pseudospecies” (UPS) model because it assumes
that the unused portion is the same as any species’ portion
under the assumption of a uniform resource distribution.
In this case, the resource efficiency of the community is
independent of species composition. If the species follow
the geometric decline given by equation (9), then the nor-
malized Dirichlet parameters (see eq. [10]) are as follows:

i�1nq(1 � q)
a p , i p 1, … , n,i n1 � (1 � q)

a p 1.n�1

From equation (11), one can see that the temporal stability
for the community is

�S (n) p n(n � 2).com

Thus, the temporal stability increases at a rate that is
slightly greater than linear as the number of species in-
creases. It is worth noting that this is the same expression
for community stability derived by Lehman and Tilman
(2000) from their stochastic model that assumed each spe-
cies was competitively equivalent. Although they did not
couch their broken-stick model in terms of a Dirichlet
distribution, it is equivalent to the Dirichlet described by

. Note that our UPS model and the modelD(1, 1, … , 1, 1)
of Lehman and Tilman (2000) both satisfy the conditions

n

a p n,� i
ip1

a p 1.n�1

Indeed, any Dirichlet model satisfying this condition will
give rise to the same community stability (see eq. [11] for
verification) regardless of competitive asymmetries. Thus,
for the UPS model, there is no difference in the aggregate
stability of communities with varying degrees of asym-



518 The American Naturalist

Figure 3: Predicted effects of asymmetric resource capture based on four versions of the broken-stick model with systematic entry; that is, species
were added to the community according to their rank. The population stabilities of different species for models UPS, MPS, and APS were qualitatively
similar and increased with species richness. This result is qualitatively different than what is predicted if the resources are distributed uniformly
among species. The rate of increase and the value of stability are dictated by the shape parameter q and the rank of the species.

metry since the unused resource is always modeled with
the constant 1 (fig. 2).

From equation (12), one can derive the following ex-
pression for the population stability of species i:

i�1n(n � 2)q(1 � q)�S (n) p . (13)i n i�1(n � 1)[1 � (1 � q) ] � nq(1 � q)

This expression clearly depends not only on the species’
rank, i, but also on the asymmetry of competition, q. Con-
sider this equation under the following assumptions:

In the case of , the species are approaching a state�q r 0

in which they are all competitively equivalent (fig. 1A).
After applying L’Hopital’s rule,

n � 2�lim S (n) p .i
� nq r0

Thus, uniform resource allocation results in the temporal
stability of any individual species asymptotically approach-
ing 1 as species richness increases. This is the same result
for the population stability of a species that Lehman and
Tilman (2000) derived from their stochastic model that
assumed uniform competitive abilities.



Notes and Comments 519

In the case of , there is a dominance hierarchy0 ! q ! 1
among the species that becomes more pronounced as q
increases. For large n, the population stability of each spe-
cies is

i�1nq(1 � q)�S (n) ≈ .i i�1[1 � q(1 � q) ]

If , then this expression simplifies so that the tem-i p 1
poral stability for the dominant species for large n behaves
as

nq�S (n) ≈ .1 1 � q

Thus, a systematic entry of species according to rank allows
the population stability of each species to grow unchecked,
provided there is no limit to the number of species that
can be further packed into the community. The rate of
increase in stability is regulated by both the decay param-
eter q and the rank of the species; dominant species stand
to gain the most from increases in richness (fig. 3).

In the case of , two stability results follow im-�q r 1
mediately from equation (13). First, the population sta-
bility of all species except the most dominant goes to 0.
Second, the population stability of the dominant species
behaves like the stability of the community as q approaches
1; that is,

�lim S (n) p n(n � 2).1
�q r1

This is reasonable, since the implication of q approaching
unity is that the community is approaching a monoculture.

Minimum Pseudospecies (MPS)

In this model, the unused resource was treated as a pseu-
dospecies whose competitive ability was inferior to all
other species in the community. Under systematic entry,
the unused resource in a community of n species is de-
scribed by the next geometric parameter, . We termedpn�1

this the “minimum pseudospecies” (MPS) model. Func-
tionally, the MPS model applies most readily to com-
munities subjected to relatively minor and infrequent dis-
turbances and structured principally by competition.
Inclusion in these nearly equilibrial communities is de-
pendent on efficiency of resource use; thus, species should
pack relatively tightly into the available niche space, with
the result that unused resources should occur at low levels
(Pianka 1974; Huston 1994).

Although a full analysis of this model could be done,

we report here only the results as they compare with the
UPS model. Since , then equation (11)MPS UPSa K a p 1n�1 n�1

implies

MPS UPS �S (n) k S (n) p n(n � 2),com com

where the strength of these inequalities is heightened as
the asymmetry in competitive abilities increases (fig. 2).
Similarly, since for all because ofMPS UPSa 1 a i p 1, … , ni i

the normalization, then quantitatively

MPS UPSS (n) 1 S .i i

However, qualitatively the curves are nearly identical (fig.
3).

Average Pseudospecies (APS)

In this model, the unused resource was treated as a pseu-
dospecies chosen randomly from the available species pool
and thus was termed the “average pseudospecies” (APS)
model. Unlike the MPS model, the APS model depicts
communities subjected to substantial and frequent dis-
turbances and clearly nonequilibrial conditions. Inclusion
in APS communities is dependent less on efficiency of
resource use than on responses to disturbance. This sug-
gests that species should be packed less tightly into the
available niche space and unused resources should occur
at greater levels than in communities structured to a
greater degree by biotic interactions (Pianka 1974; Huston
1994).

Since the unused resource was chosen randomly, we ran
5,000 trials at each species richness. Community and pop-
ulation stabilities were calculated for each trial. These re-
sults were then averaged at each species richness to com-
pute the expected stability for an n-species community.
Because of our normalization, the average value of a Dir-
ichlet parameter is 1; that is, . Thus, the relationshipā p 1i

between the community stability of the model and the
previous two can be explained as follows: since MPSa ≤n�1

and , thenAPS UPS¯a a p 1 p an�1 i n�1

MPS APS ¯S (n) 1 S (n) p S (n, a ) 1 S (n, a )com com com i com iover all i

UPSp S (n).com

To summarize, models’ performance in terms of com-
munity stability follows the order (fig.MPS 1 APS 1 UPS
2).

Population stability for the APS model is qualitatively
similar to both the MPS and UPS models, but there are
slight quantitative differences between the models. Since

for all , thenMPS APSa 1 a i p 1, … , ni i
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MPS APSS 1 S .i i

The species’ relationship between the APS and UPS models
is a bit more complicated because there is a point at which
the inequality between species’ parameters switches from

for to forAPS UPS APS UPSa ! a i p 1, … , j a 1 a i p j �i i i i

. Thus, for the more dominant species,1, … , n

APS UPSS 1 S , i p 1, … , j,i i

but for inferior species, the inequality reverses:

UPS APSS 1 S , i p j � 1, … , n.i i

Competitive asymmetry dictates the species’ rank, j, at
which the reversal occurs: greater q leads to a lower j (to
see reversal, cf. fig. 3B, 3D).

Random Entry

In this second approach, a community of n species was
comprised of a random subset of the possible spe-N � 1
cies. Randomly assembled communities allowed us to sep-
arate (to some degree) the effects on community stability
of species richness and species composition. This was ac-
complished by sampling different compositions, which
have the same species richness, and then averaging the
results to obtain a community stability estimate indepen-
dent of a particular composition (Tilman 1999). Specifi-
cally, for each species richness, , the resultsn p 1, … , N
from 5,000 trials were recorded on the basis of Dirichlet
distributions for the three models described above (UPS,
MPS, APS). For each trial, n species were chosen randomly
without replacement from a total species pool of size

, and their respective competitive abilities from theN � 1
geometric decline were recorded, . The parameters were{p }i
the same for each model tested so that variation inherent
in the model could be separated from variation due to
sampling. Next, a species was designated as the unused
resource according to the criteria of each model. After
normalization to (see eq. [10]), this set became then � 1
parameters for the Dirichlet distribution.

For example, suppose when that speciesN p 20 n p 3
were chosen and sorted according to rank, resulting in the
set . In all three models, the corresponding pa-{3, 5, 15}
rameters derived from equation (9) represent{p , p , p }3 5 15

the competitive abilities of the three species present in this
sample community. We now consider the different broken-
stick models.

For the UPS model, these three parameters were scaled
such that the first three Dirichlet parameters summed to

. Then the last Dirichlet parameter describing then p 3
unused resource was assigned the value of 1. For the MPS

model, an additional species was chosen without replace-
ment under the restriction that it must be competitively
inferior to all species present, for example, . Thenp p pur 18

the set was scaled to sum , and{p , p , p , p } n � 1 p 43 5 15 18

these normalized values became the Dirichlet parameters.
The APS model is similar to MPS except that there was
no restriction in choosing the additional species, for ex-
ample, .p p pur 6

Community stability was calculated from equation (11),
and population stability was calculated from equation (12)
for each species present in each trial. The community sta-
bilities from the 5,000 trials were then averaged to elim-
inate the impact of composition and focus on the role of
diversity on stability. Thus, there was an average com-
munity stability, , calculated for each species rich-S (n)com

ness . Similarly, the population stabilities forn p 1, … , N
species i, , were averaged across all communities ofS (n)i

the same species richness in which species i was present.
A comparison of simulation results for the models with

a shape parameter of and (figs. 4, 5) per-q p .01 q p .2
mitted the following observations regarding the role of
asymmetry in resource use on temporal stability in ran-
domly assembled communities. First, community stability
increased linearly with species richness for all models. Sec-
ond, a collective increase in efficiency of resource use by
species in the community, that is, a lower parameter,an�1

resulted in an increase in predicted stability for a given
level of species richness. This result was intensified as the
degree of asymmetry increased from toq p .01 q p .2
(fig. 4). Thus, in communities for which resource com-
petition is an important determinant of abundance (model
MPS), enhanced community stability is predicted. Third,
population stability for individual species was qualitatively
similar for each model: each predicted an asymptotic de-
cline to a constant as species richness increased (fig. 5).
The UPS model for the dominant species was the one
exception to this rule; the population stability of the best
competitor actually increased, albeit to the same constant
as the other models predicted. This asymptotic constant
is dependent on the asymmetry, q, as well as the rank of
the species, i. As expected, the stability of a dominant
species is greater than the stability of an inferior compet-
itor. Note again that the amount of asymmetry intensifies
the results. Thus, greater dominance results in greater sta-
bility both of the community and of the dominant species
but lower stability of the inferior species; moreover, greater
asymmetry quickens the approach to the asymptotic con-
stant in population stability.

Threshold Requirements for Resource Use

Previous broken-stick models have assumed that species
could survive on increasingly smaller levels of resources,
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Figure 4: Predicted effects of asymmetric resource capture based on four versions of the broken-stick model with random entry; that is, species
were added to the community randomly. Solid line represents a uniform distribution of resources among the species on the basis of uniform capture
of resources by species (Lehman and Tilman 2000). Circles represent model UPS in which an average of of resources are unused but1/(n � 1)
species capture resources according to the geometric decline. Plus signs represent model MPS in which the least abundant species in the sample
was chosen as the unused resource pseudospecies. Stars represent model APS in which the pseudospecies was chosen randomly from the sampled
species. Community stability increased with species richness. This effect was heightened as asymmetry increased for both the MPS and APS models;
however, the relationship remained linear.

resulting in the potential for an infinite number of species
and an infinitesimally small unused component of the re-
source stick. We investigated whether introducing a min-
imal per capita resource requirement for survival influ-
enced the relationship between diversity and stability. To
address the effect of a threshold resource requirement, we
assumed that all individuals in the community had iden-
tical, finite resource requirements. We then examined the
stability of communities with fixed resources that could
support maximum populations of 10, 25, 50, 100, 250,
and 500 individuals. As before, we modeled unused re-
sources as a pseudospecies.

Threshold requirements were incorporated in the fol-
lowing manner. The set derived{p : i p 1, … , N � 1}i

from a geometric decline parameterized by q was nor-
malized such that the sum equaled 10,000. Each normal-
ized value was rounded up to the nearest whole number,
which represented the number of individuals from each
species. The total count represented the pool of individuals
from which sample communities were drawn. By con-
struction, this pool exhibited the same interspecific asym-
metry in resource use as the geometric decline. A sample

community of size was con-T � {10, 25, 50, 100, 250, 500}
structed by randomly selecting individuals without re-
placement from the pool. Once a sample had been drawn,
one species found in the sample was randomly selected to
serve as the unused resource (somewhat analogous to a
finite version of the APS model). This procedure was used
to produce 50,000 sample communities of size T. For a
given T, sample communities were first grouped by species
richness, n. All sample communities containing n species
were then further subdivided into assemblages bearing the
same species composition. Thus, an assemblage was de-
fined as a collection of sample communities of the same
size, T, which was composed of the same n species. Com-
munity stability was calculated for each assemblage con-
taining at least four samples according to equation (4).
These derived stabilities were then averaged across all as-
semblages having the same species richness (Lehman and
Tilman 2000). We used this approach to obtain an estimate
of community stability that was somewhat independent of
species composition, in a manner analogous to our
random-entry, broken-stick model. Simulations were con-
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Figure 5: Predicted effects of asymmetric resource capture based on four versions of the broken-stick model with random entry; that is, species
were added to the community randomly. The population stabilities of three different species for models UPS, MPS, and APS were qualitatively
similar to each other and approached asymptotic constants rapidly. These asymptotic constants were above the values predicted under a uniform
distribution of resources for rank 1 species, about the same for rank 10, and below for rank 20.

ducted from geometric declines parameterized by q p
..01, .2, .3

As expected, threshold resource requirements restricted
species packing (fig. 6). Distributions associated with the
range of species richness for each community size, T, were
approximately normally distributed, and modal richness
increased asymptotically with T. Greater asymmetry
(greater q) shifted the distributions to lower values and
slightly decreased their variances. For example, consider a
community size of 50 ( ). When , all com-T p 50 q p .2
positions containing at least four samples had a species
richness that fell within the range of , and the mode[8, 16]
of the distribution was 12, whereas when , the rangeq p .3

shifted to with mode 9 (fig. 6). We attributed this[5, 12]
shift to the inherent nestedness of this sampling scheme
(i.e., passive sampling sensu Wright et al. 1998), in which
superior competitors dominate assemblages. In fact, the
shape of the diversity-stability curve was functionally sim-
ilar to the broken-stick models MPS and APS that em-
ployed a systematic entry of species (fig. 6). In the absence
of this nestedness, which occurs as q approaches 0, it was
hard to get assemblages that had enough members from
which to calculate community stability. In fact, most com-
positions were unique. Thus, the results for areq p .01
not given because even with an increased sample size of
100,000 replicates for each value of T, we still had little
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Figure 6: Predicted effects on community stability of imposing threshold requirements for individuals when (A) and (B). Communitiesq p .2 q p .3
were constructed for , 25, 50, 100, 250, and 500 individuals. Arrows point to the modal species richness for each T based on 10,000 trials.T p 10
Predictions of the broken-stick models APS and MPS under systematic entry are depicted by a solid and dotted line, respectively.

confidence in the results.
This model displayed an increasing, nonlinear relation-

ship between community stability and species richness (fig.
6). Community stability increased with species richness,
while community size was held constant. In addition, com-
munity stability increased with community size when spe-
cies richness was held constant; that is, when the range of
species richness overlapped for different community sizes,
the stability increased according to community size.

Discussion

Few communities consist of competing species that ran-
domly partition resources, and no community can increase
species richness indefinitely on a finite limiting resource.
Because of this, we chose to investigate the diversity-

stability hypothesis with two models: first, a modified
broken-stick model in which resource allocation was me-
diated through competition parameters derived from a
geometric decline, and second, a model that imposed
threshold resource requirements on individuals from dis-
tinct species competing for a finite resource under asym-
metric competition.

Let us first consider the role of diversity (i.e., species
richness) on the population stability of these simulated
species. The literature provides no clearly defined rela-
tionship between population stability and species richness
(Cottingham et al. 2001). Although recently some theo-
retical and empirical studies predict that population sta-
bility should decline with diversity (Tilman 1999; Lehman
and Tilman 2000), others have found no relationship
(McGrady-Steed and Morin 2000; Romanuk and Kolasa
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Figure 7: Comparative graph for model APS showing the influence of species richness on the following aggregate community properties: total
biomass (A), summed variance (B), net variance (C), and summed covariance (D). Dotted lines resulted from systematic entry of species into the
community according to rank, whereas solid lines resulted from a random entry of species. Lines marked with a circle correspond to , andq p .01
lines with no markers correspond to . Other models (MPS, UPS) have similar results.q p .3

2002). Our broken-stick model suggests that the role of
diversity is in part influenced by the organization of the
community. In randomly assembled communities, pop-
ulation stability for all species generally declined with spe-
cies richness; however, this relationship converged so
quickly to a constant, especially in the presence of asym-
metry, that it would be fair to say there is hardly any
dependence on species richness once n exceeds 5 (fig. 5B,
5D, 5F). The results from a systematic entry of species
into the community based on competitive ability stand in
stark contrast to this result (fig. 3). Under this paradigm,
the stability of each species will eventually increase without
bound as long as additional species can pack into the
community. Of course, it is hard to say whether species
richness or composition is the driver of stability in this
system. Regardless, it would be interesting to look at pop-
ulation stability in such highly structured ecosystems.

There is considerable evidence to support the idea that
the temporal stability of the community is enhanced by
species richness (Doak et al. 1998; Tilman 1999; Hughes
and Roughgarden 2000; Lehman and Tilman 2000; Ives
and Hughes 2002), and indeed, all of our results add to
this support (figs. 2, 4, 6). But what mechanisms governed
this relationship in our models? In a review article, Cot-
tingham et al. (2001) noted that evenness, which measures

the degree of similarity in abundance or biomass of species,
is a major factor in determining the strength of the
diversity-stability relationship. Evenness is thought to en-
hance the diversity-stability relation (Doak et al. 1998;
Hughes and Roughgarden 2000) through a process called
statistical averaging (Doak et al. 1998; Tilman et al. 1998;
Cottingham et al. 2001). This effect maintains that the
variability of a sum of individual properties (e.g., total
biomass) is dampened because the chance of individual
fluctuations canceling each other increases with diversity.
Evenness is thought to increase the likelihood of these
cancellations and thus increase community stability (Doak
et al. 1998). Evenness is the community attribute at the
heart of the results we have presented. Indeed, the geo-
metric parameter, q, which quantifies the degree of asym-
metric competition, can be viewed as a measure of even-
ness where smaller values of q correspond to more
evenness among the species and visa versa. However,
higher levels of asymmetry among the species (larger q)
in the threshold model and all but one of the broken-stick
models appeared to enhance both the level of community
stability and the rate at which it increased (figs. 2, 4, 6).
The model UPS was the one exception to this rule; this
distinction was a result of community efficiency being in-
dependent of species composition.
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Figure 8: Comparative graph for model threshold showing the influence of species richness on the following average community properties: total
biomass (A), summed variance (B), net variance (C), and summed covariance (D). Open symbols correspond to a community constricted to

, whereas closed symbols correspond to . Circles show results when and triangles when . Other community sizesT p 50 T p 100 q p .2 q p .3
showed similar results.

Recall that according to the definition (eqq. [2], [4]),
the temporal stability of a community increases if either
the mean of the sum of biomasses increases or the variance
of the sum decreases. Recall further that the variance of
a sum, , can be partitioned into the sum of theVar (� X )i
variances, , and the sum of the covariances,� Var (X )i

. A decline in the variance of the sum can� Cov (X , X )i ji(j

result from reductions in the individual variances, a sta-
tistical phenomenon termed the “portfolio effect” (Doak
et al. 1998; Lehman and Tilman 2000). A decline in the
variance of the sum also can result from reductions in the
covariance between species, termed the “covariance effect”
(Lehman and Tilman 2000). The covariance effect can be
thought of as an ecological measurement of species inter-
actions, with more intense competition leading to a more
negative covariance (Lehman and Tilman 2000). Alter-
natively, covariance also measures the degree of similarity
between species responses to their environment. A positive
covariance (or correlation) reduces the role of statistical
averaging (Doak et al. 1998; Yachi and Loreau 1999; Ives
et al. 1999; Ives and Hughes 2002), whereas increasingly
negative covariances support statistical averaging through
the “insurance effect” (Ives et al. 1999, 2000; Yachi and
Loreau 1999).

To assess the mechanisms governing the relationship

between diversity and community stability in our models,
consider figures 7 and 8. Both broken-stick and threshold
models were characterized by statistical averaging, that is,
a decline in net variance with increasing species richness
(figs. 7C, 8C). In the broken-stick model APS, the summed
covariances for each value of q decreased until four species
were present and then increased with increasing species
richness, implying that the insurance effect was not present
(fig. 7D). Note that when asymmetry increased (increase
in q, i.e., decline in evenness), the level of covariance also
increased, an effect that was more pronounced with sys-
tematic entry. Increased covariance alone depresses statis-
tical averaging; however, this effect was countered by the
portfolio effect, which reduced the variances with increas-
ing asymmetry (fig. 7B). Thus, the net variances of the
broken-stick models were dominated by the portfolio ef-
fect, which was actually enhanced by dominance. However,
the threshold models exhibited increasingly negative co-
variances as species richness increased (within a fixed com-
munity size or regardless of community size; fig. 8D). The
role of statistical averaging thus was increased through the
insurance effect (Yachi and Loreau 1999), which explains
the elevated community stability of the threshold model
at a given species richness over the APS model (fig. 6).

All of our models were characterized to some degree by
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overyielding (Naeem et al. 1995); that is, average abun-
dance increased with diversity. In our threshold model,
overyielding occurred but was highly constrained by fixing
the size, T, of a community (fig. 8A). However, overyield-
ing was prominent in all the broken-stick models (e.g., fig.
7A). Indeed, this process is actually built into the model
a priori by normalizing the Dirichlet parameters to n �

. Recent empirical evidence lends support to the quali-1
tative nature of this assumption. Bullock et al. (2001) ob-
served overyielding in hay meadow restoration experi-
ments in southern Britain. Tilman et al. (2001) compared
biomass production in experimental grasslands and found
that productivity increased with species richness. Increased
asymmetry decreased overyielding (albeit only slightly)
with model APS under random entry yet increased over-
yielding under systematic entry (fig. 7A).

The degree of competition among species and their
composition also plays a role in the diversity-stability de-
bate. Resource capture and hence predicted productivity
were greater for MPS models than for APS models, sug-
gesting that species composition can also be an important
determinant. Competitively structured communities near
equilibrium should outperform equally diverse but non-
equilibrial communities in which the effects of competi-
tion are ameliorated by stochastic events (figs. 2, 4). Our
results support the notion that tightly coevolved species
associations can lead to enhanced community stability,
whereas reduced effects of species richness on stability are
predicted for communities consisting of more opportun-
istic, less efficient species. A logical extension of our work
would be to assess the stability of real communities that
have experienced varying levels of disturbance. Experi-
mental microcosms may be most appropriate for these
studies because of the greater level of control provided,
although longitudinal data sets on natural plant or ver-
tebrate communities may also be appropriate in some in-
stances (e.g., Heske et al. 1994; Brown et al. 2001).

From a conservation perspective, our findings highlight
potential implications associated with reserve design. In
one sense, community stability increases with community
size and thus bolsters an argument for larger reserves.
However, community size alone may be insufficient to
counteract the effects of asymmetric resource capture
among species. For example, if two reserves with identical
resource levels are available, results from our threshold
model predict that the reserve characterized by a more
competitively structured community will exhibit lower
species richness, despite its greater community stability
(fig. 6).

In conclusion, our statistical models showed an increase
in community stability with species richness. This effect
was actually enhanced with increased asymmetry among
species. However, the relationship among population sta-

bilities and species richness could not be generalized and
was further confounded by how a community was
assembled.
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